SOLUTIONS TO EXAM 1, MATH 10550

1. Find points where the function $f(x)=\frac{x^{2}-1}{x^{3}-4 x}$ is not continuous?

Solution: Factor the denominator of the function to get $x(x-2)(x+2)$. The function will be discontinuous when this is equal to 0 which is exactly when $x=0$ and $x= \pm 2$.
2. Compute

$$
\lim _{x \rightarrow 2} \frac{\sqrt{x^{2}+5}-3}{x-2}
$$

Solution: Directly plugging 2 into the given function gives 0 in the denominator and 0 in the numerator. Therefore, we need to rationalize by multiplying the numerator and denominator by $\sqrt{x^{2}+5}+3$. Following this through gives us the following:

$$
\begin{aligned}
\lim _{x \rightarrow 2} \frac{\sqrt{x^{2}+5}-3}{x-2} \cdot \frac{\sqrt{x^{2}+5}+3}{\sqrt{x^{2}+5}+3} & =\lim _{x \rightarrow 2} \frac{x^{2}+5-9}{(x-2) \sqrt{x^{2}+5}+3} \\
& =\lim _{x \rightarrow 2} \frac{(x-2)(x+2)}{(x-2) \sqrt{x^{2}+5}+3} \\
& =\lim _{x \rightarrow 2} \frac{x+2}{\sqrt{x^{2}+5}+3} \\
& =\frac{4}{6}=\frac{2}{3}
\end{aligned}
$$

3. Find $f^{\prime}(4)$ if

$$
f(x)=4 \sqrt{x}-\frac{16}{\sqrt{x}} .
$$

Solution: First, calculate $f^{\prime}(x)$.

$$
f^{\prime}(x)=4\left(\frac{1}{2}\right) x^{-\frac{1}{2}}-16\left(-\frac{1}{2}\right) x^{-3 / 2}=2 x^{-\frac{1}{2}}+8 x^{-3 / 2}
$$

So $f^{\prime}(4)=\frac{2}{\sqrt{4}}+\frac{8}{4^{3 / 2}}=1+1=2$.
4. Compute the derivative of

$$
f(x)=\frac{x+\cos x}{x+\sin x} .
$$

Solution: Recalling the quotient rule, with $h(x)=x+\cos x, g(x)=x+\sin x$, so $f(x)=\frac{h(x)}{g(x)}, h^{\prime}(x)=1-\sin x, g^{\prime}(x)=1+\cos x$ So

$$
f^{\prime}(x)=\frac{h^{\prime}(x) g(x)-g^{\prime}(x) h(x)}{g(x)^{2}}=\frac{(1-\sin x)(x+\sin x)-(1+\cos x)(x+\cos x)}{(x+\sin x)^{2}}
$$

5. Find all the horizontal tangent lines to the curve $y=\frac{1}{1+x^{2}}$.

Solution: First, note that

$$
y=\frac{1}{1+x^{2}}=\left(1+x^{2}\right)^{-1}
$$

Now differentiate the function using the chain rule:

$$
y^{\prime}=(-1)\left(1+x^{2}\right)^{-2}(2 x)=\frac{-2 x}{\left(1+x^{2}\right)^{2}} .
$$

For each x, y^{\prime} gives the slope of the tangent line to the curve at x. Since horizontal lines have slope 0 , we must find when $y^{\prime}=0$. This happens only when $-2 x=0$, that is, when $x=0$. Therefore, the only horizontal tangent line to the curve occurs at $x=0$. Since

$$
y(0)=\frac{1}{1+(0)^{2}}=1
$$

the horizontal tangent line is $y=1$.
6. Find the derivative of $f(x)=\left(1+\sin \left(x^{2}\right)\right)^{1 / 4}$.

Solution: We can write $f(x)$ as the composition of three functions: $g(x)=x^{\frac{1}{4}}, h(x)=$ $1+\sin (x)$, and $p(x)=x^{2}$. We have $f(x)=g(h(p(x)))$. Thus, using the chain rule twice gives:

$$
\begin{aligned}
f^{\prime}(x) & =g^{\prime}(h(p(x)))\left(h^{\prime}(p(x)) p^{\prime}(x)\right) \\
& =\frac{1}{4}\left(1+\sin \left(x^{2}\right)\right)^{-\frac{3}{4}}\left(\cos \left(x^{2}\right)(2 x)\right) \\
& =\frac{1}{2} x\left(1+\sin \left(x^{2}\right)\right)^{-\frac{3}{4}} \cos \left(x^{2}\right) .
\end{aligned}
$$

7. If $f(x)=x^{2} \cos x+\sin x$, find $f^{\prime \prime}(x)$.

Solution: $f^{\prime}(x)=\cos x-x^{2} \sin x+2 x \cos x, f^{\prime \prime}(x)=2 \cos x-\sin x-x^{2} \cos x-4 x \sin x$.

8. Compute

$$
\lim _{x \rightarrow 0} \frac{1-\cos x}{x \tan x}
$$

Solution:

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{1-\cos x}{x \tan x} & =\lim _{x \rightarrow 0} \frac{(1-\cos x)}{x \tan x} \frac{(1+\cos x)}{(1+\cos x)} \\
& =\lim _{x \rightarrow 0} \frac{\sin ^{2} x}{x \tan x(1+\cos x)} \\
& =\lim _{x \rightarrow 0} \frac{\sin x \cos x}{x(1+\cos x)} \\
& =\lim _{x \rightarrow 0} \frac{\sin x}{x} \times \lim _{x \rightarrow 0} \frac{\cos x}{1+\cos x} \\
& =\frac{1}{2} .
\end{aligned}
$$

9. If $f^{\prime}(2)=5, g(4)=2, g(2)=1, f(2)=-1$ and $g^{\prime}(4)=3$, find $(f \circ g)^{\prime}(4)$.

Solution: Using the chain rule, we have

$$
\begin{aligned}
(f \circ g)(4) & =f^{\prime}(g(4)) g^{\prime}(4) \\
& =f^{\prime}(2) g^{\prime}(4) \\
& =15 .
\end{aligned}
$$

10. If $\sin (\pi x y)=\pi(x+y)$ find $\frac{d y}{d x}$ at $(1,-1)$ by implicit differentiation.

Solution: Differentiating both sides with respect to x,

$$
\cos (\pi x y)\left(\pi y+\pi x \frac{d y}{d x}\right)=\pi\left(1+\frac{d y}{d x}\right) .
$$

Now, letting $x=1, y=-1$ we get

$$
\pi \cos (-\pi)\left(-1+\frac{d y}{d x}\right)=\pi\left(1+\frac{d y}{d x}\right) .
$$

Isolating $d y / d x$ we get

$$
\frac{d y}{d x}=0
$$

11. Find the derivative of

$$
y=\frac{1}{1-x}
$$

using the definition of the derivative.
Solution: Let $f(x)=\frac{1}{1-x}$. Then the definition of derivative says

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{1}{1-(x+h)}-\frac{1}{1-x}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{1-x}{(1-x-h)(1-x)}-\frac{1-x-h}{(1-x-h)(1-x)}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{(1-x)-(1-x-h)}{(1-x-h)(1-x)}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{h}{(1-x-h)(1-x)}}{h} \\
& =\lim _{h \rightarrow 0} \frac{1}{(1-x-h)(1-x)} \\
& =\frac{1}{(1-x)(1-x)}=\frac{1}{(1-x)^{2}}
\end{aligned}
$$

12. For what points P and Q on the graph of the function $y=x^{2}$ does the tangent line at that point pass through the point $(0,-1)$?

Hint: Write down the equation for the tangent line through the point $\left(a, a^{2}\right)$ and proceed from there.

Solution: First, $y=f(x)=x^{2}$, and so $f^{\prime}(x)=2 x$. Recall that the slope of each these tangent lines at P and Q is the derivative of f at the x coordinate of P and at Q. Using the hint, we see that $f^{\prime}(a)=2 a$. By the picture, note that the tangents at
P and Q are lines that have the same y intercept, -1 . So the equation for each of the lines is $y=2 a x-1$ for two different values of a. Using the hint, with $(x, y)=\left(a, a^{2}\right)$ in the equation of the tangent line $y=2 a x-1$, we get $a^{2}=2 a^{2}-1$, or $a^{2}=1$, which (conveniently) has two possible solutions: $a= \pm 1$. Plugging ± 1 into our original equation $y=x^{2}$ we get $P=(1,1), Q=(-1,1)$.
13. Show that there is at least one solution of the equation

$$
x^{3}=3 x^{2}-1 .
$$

Justify your answer, identify the theorem you use and explain why the theorem applies.
Solution: We can rewrite this equation as $x^{3}-3 x^{2}+1=0$. Set $f(x)=x^{3}-3 x^{2}+1$. There is at least one solution to our original equation if $f(x)$ is zero for some x. Note that $f(0)=1$ and $f(1)=-1$, so 0 is between $f(0)$ and $f(1)$. The function $f(x)$ is a polynomial, so it is defined and continuous on the entire real line and in particular on the interval $[0,1]$. Therefore, the intermediate value theorem applies, and tells us for some real number a in the interval $(0,1), f(a)=0$. Thus, $0=f(a)=a^{3}-3 a^{2}+1$, so $a^{3}=3 a^{2}-1$, and a is a solution to the original equation.

